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We present a mathematical analysis of the Wang-Landau algorithm, prove its convergence, and identify
sources of errors and strategies for optimization. In particular, we found the histogram increases uniformly with
small fluctuations after a stage of initial accumulation, and the statistical error is found to scale as �ln f with
the modification factor f . This has implications for strategies for obtaining fast convergence.
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The Wang-Landau �WL� algorithm �1� has been applied to
a number of interesting problems �1–6�. It overcomes some
difficulties present in other Monte Carlo �MC� algorithms
such as critical slowing down, and long relaxation times due
to frustration and complex energy terrain. Similar to the Me-
tropolis algorithm, the WL algorithm is a generic algorithm,
independent of the details of the physical system. Many
methods have been suggested to improve the algorithm for
certain types of systems �7–9�. The same mechanism also
appears in the recent research of molecular dynamics simu-
lations �10�. Among the studies to characterize and improve
the efficiency of the algorithm, Dayal et al. �11� shows the
WL algorithm considerably reduces the tunneling time, and
Trebst et al. �12� proposed an algorithm that performs better
in terms of tunneling time. However, the WL algorithm has
been used as an empirical method. Many important questions
still remain unanswered: �i� How is the flatness of the histo-
gram related to the accuracy? �ii� What is the relation be-
tween the modification factor and error? �iii� How does the
simulation actually find out the density of states? The con-
vergence of the WL algorithm should be guaranteed by a
generic principle, in the same sense as the detailed balance
assures the convergence of the Metropolis algorithm. How-
ever, the WL algorithm is different from the Metropolis al-
gorithm, since it is not a Markov process.

In this paper we present our study of this algorithm from
an analytical approach, and try to answer those questions
raised above. Our analysis provides a proof of the conver-
gence of the method, estimation for the errors and the com-
putational time, along with some strategies for optimization
and parallelization.

The goal of the WL algorithm is to accumulate knowledge
about ��E� during a Metropolis-type MC sampling. The
Metropolis-type random walk is characterized by an accep-
tance ratio min�1,g�Ej� /g�Ei��, where g�E� is a function of
energy, similar to the Boltzman factor in the usual Metropo-
lis algorithm. Ei and Ej refer to energies before and after this
transition. The acceptance ratio biases the free random walk
and produces a final histogram h�E�, which is related to the

equilibrium distribution of the unbiased random walk ��E�
by ��E�g�E�=h�E�, provided that both sides of the identity
are normalized. This identity is essentially a result of detailed
balance. The WL algorithm divides g�Ej� by a modification
factor f after each transition, expecting g�E� to converge to
1/��E� and the histogram h�E� to be flat.

��E� is a priori unknown in the simulation. We begin our
analysis by clarifying the relevant parameters. Suppose the
phase space of our physical model is divided into N macro-
scopic states with density �number of microscopic configu-
rations� �i�0 for macroscopic state i �i=1,2 , ¯ ,N�. �These
macroscopic states could be labeled by energy, magnetiza-
tion, or other macroscopic variables.� Each microscopic con-
figuration in the phase space uniquely belongs to one mac-
roscopic state. The histogram hi�t� with 1� i�N is defined
as the number of visits of each macroscopic state before the
tth step of the simulation. Initially hi�1�=0, after macro-
scopic state k is visited at time t, hi�t+1�=hi�t�+�ik. In the
original implementation �1�, one record is inserted into the
histogram every Metropolis trial flip. However, in addition to
the modification factor, we have a second tunable parameter
of the algorithm, separation S between successive records in
the histogram, defined as the number of trial flips �random
steps� that precede each increment of the histogram. S steps
of the random walk should be regarded as a single transition
from initial macroscopic state i to the final macroscopic state
j. The transition from i to j includes S trial flips and each
trial flip makes a transition from macroscopic state kn−1 to
macroscopic state kn �k0= i and kS= j� with acceptance ratio
min (1, exp�ln f�hkn−1

�t�−hkn
�t���). At time t, macroscopic

state k has a probability pk�t� to be picked out by the simu-
lation. pk�t� is normalized so that vector p�t��VN, where
VN= �x� �0,1�N ,�k=1

N xk=1� is an N-dimensional simplex. In
the following derivation, we assume S is larger than the au-
tocorrelation length of the random walk, thus i and j can be
considered as independent random macroscopic states. The
effect of autocorrelation will be discussed later. Although
this assumption differs from real simulations, it is reasonable
since the particular model under study is not specified. It is
also asymptotically accurate for any model when S is large
enough. With this assumption, the probability distribution
p�t� has an explicit expression,

pi�t� = Z�t�−1��i/�i�f−hi�t�, �1�

where Z�t�=�k=1
N ��k /�k�f−hk�t� is the normalization constant,

and without loss of generality, we insert an initial guess �i
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into the simulation. In fact fhi�t� serves as a guess for the
simulation after t. Similarly the simulation can start from
some “existing knowledge” represented by �i. If nothing is
known about the density of states, then we start with �i=1.
With the probability distribution Eq. �1�, the macroscopic
state k has the probability pk�t� to be picked out in the next
step. Once this happens, p�t� is changed to p�t+1� by

pi�t + 1� = pi�t�f−�ik/�1 − pk�t� + pk�t�f−1� . �2�

Here the Kronecker � only suppresses pk�t� by a factor of f
and the denominator comes from the change in Z�t+1� such
that the normalization of probability is preserved. We point
out that the evolution of p�t� is a Markov process, although
the WL algorithm is not, because it makes references to its
entire history.

We will prove that the p�t� is attracted to the vicinity of
uniform distribution �pi

�0�=1/N� in the simulation. For this
purpose, we define a measure of the difference between p�t�
and the uniform distribution p�0� by

��t� = N ln N + �
i=1

N

ln pi�t� . �3�

One can check that ��t��0 and ��t�=0 only when p�t�
= p�0�. After the macroscopic state k is picked out, ���t�
=��t+1�−��t� is given by

���t� = − ln f − N ln�1 − pk�t� + pk�t�f−1� . �4�

Obviously ���t��−ln f , and when pk�t�� �1− f−1/N� / �1
− f−1�	 ln f /N�1− f−1� �approximately 1/N when f →1�,
���t� is always positive. This shows that ��t� increases
when the simulation picks out macroscopic states with prob-
abilities above average. However, there is a probability for
��t� to decrease, in particular, at the center of attraction
�p�t�= p�0��, ���t� is negative. As a result, rather than con-
verging to the uniform distribution, p�t� is expected to either
fluctuate around the uniform distribution, or go away from it.
Actually the second situation does not happen. To prove this,
we first show that the expectation value Ep�t�����t�� �aver-
aged over all possible moves� has a lower bound determined
by p�t�: Using Eq. �4�, the expectation value becomes

Ep�t�����t�� = − ln f + N�
k=1

N

pk�t�ln
1

1 − pk�t��1 − f−1�
.

Since 0� pk�t��1− f−1��1, we use the inequality ln�1−x�−1

�x for x� �0,1� to give a lower bound for the logarithm,
which turns out to be

Ep�t�����t�� � − ln f + N�1 − f−1��
k=0

N

pk
2�t� .

Typically pk�t� is of order 1 /N, where N is a large integer, so
this lower bound is very close to the actual value. This lower
bound can be further expressed in terms of the Euclidean
distance between p�t� and p�0�, since 
p�t�− p�0�
2= 
p�t�
2

−1/N, due to the normalization of p�t�. Therefore we have
Theorem 1. If 
p�t�− p�0�
2=N−1��1− f−1�−1ln f −1�+	, with


¯ 
 being the Euclidean distance, the expectation value of
���t� averaged over N possible moves is bounded from be-
low Ep�t�����t���N�1− f−1�	.

Theorem 1 states that for a probability distribution p�t�
outside the N-dimensional sphere B	 defined by its condition,
��t� always has a tendency to increase. Next we consider an
ensemble of simulations, whose p�t� has a certain distribu-
tion at time t, Ft�p�. The ensemble-averaged ��t� is defined
as ���t��=Ft�p���p�dp. �Note in the integrand we treat �
as a function of p instead of time t.� We want to show that
the evolution of Ft�p� brings every simulation in the en-
semble into the sphere B	. Define D�p , p�� as the probability
of bringing distribution p� to p after one step. Obviously,
Ft+1�p�=VN

D�p , p��Ft�p��dp�, where the integral over p� is
restricted to the simplex VN.

We can express the ensemble average of ��t+1�, ���t
+1��=VN

Ft+1�p���p�dp, with Ft�p� : ���t+1��
=/VN

��p�D�p , p��Ft�p��dp�dp. As a result of Theorem 1, if
we assume at time t, every simulation is outside B	, i.e.,
p��B	, then VN

��p�D�p , p��dp���p��+N�1− f−1�	.
Therefore ���t+1���VN

���p��+N�1− f−1�	�Ft�p��dp�
= ���t��+N�1− f−1�	, which is the following corollary:
Corollary 2. If the distribution Ft does not enter B	, i.e.,
supp�Ft��B	=�, then ���t+1��� ���t��+N�1− f−1�	.

This result implies that ���t�� increases at least linearly as
the simulation goes. However, if supp �Ft� is always outside
B	, ��t� is therefore bounded from above by the maximum
value of ��p� on the boundary of B	. This contradiction tells
us that part of the ensemble has to be pushed into B	 so that
supp �Ft��B	��. We can exclude those parts of the en-
semble already inside B	, and apply the same inference to the
remaining part of the ensemble that is still outside B	. No
matter where the simulation starts, the conclusion is that p�t�
sooner or later goes into B	. Once p�t� is in the vicinity of
p�0�, it is unlikely to escape because ���t� has a lower bound
���t��−ln f . If after a certain step p�t� moves outside B	,
we can immediately use Corollary 2 to show that it is at-
tracted back into B	. It is this attraction towards p�0� that
reduces the tunneling time of the WL algorithm �11�. When
N�1− f−1�
1, this attraction is weak, which explains why
Ref. �11� finds the tunneling time of the WL algorithm satu-
rates when f is less than a critical value determined by the
system size.

When p�t� is trapped near p�0�, the histogram shows a
uniform growth with fluctuation. hi�t�=logf��i /�i�+ t /N
+ri�t�, where ri�t� is a random number with zero mean. The
approximate density of states is measured from the histo-
gram by �i��t�=K�i f

hi�t�, where K is a proper normalization
constant. Figure 1 shows three snapshots of the histograms
calculating the density of states of a two-dimensional Ising
model on a lattice of size 32�32 with periodic boundary
conditions. We have used f =e4 in this simulation to reveal
the fluctuation of the histogram in Fig. 1. The simulation
visits energies �macroscopic states� with high density of
states first, then extends the histogram to the whole spec-
trum. Once the whole spectrum is visited, the histogram
grows uniformly with small fluctuation. Two important ob-
servations follow the results above: �i� A flat histogram is not
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required for convergence; the histogram is ready for calcula-
tion of �� when it reaches a threshold hi�t�� ri

, for all i’s,
where ri

denotes the standard deviation of ri�t�. �ii� The
statistical error can be reduced by averaging over multiple
results obtained with the same f , as well as reducing f . A
proper estimation of the statistical error is from the condition
of Theorem 1. Since p�t� fluctuates around a ball centered at
p�0� of radius N−1/2��f�=�N−1��1− f−1�−1ln f −1�, we use
��f� to give an reasonable estimation of the statistical error.
p�t� is related to ���t� by pi�t�=C�i�i�

−1�t�, where C is a
constant for all i’s. Plugging this into 
p�t�− p�0�

	N−1/2��f�, we arrive at

� 1

N
�
i=1

N �NC�i

�i��t�
− 1�2

	 ��f� , �5�

where NC is a constant allowed by the WL algorithm, which
can be absorbed into �i��t�. The left side of this equation is
the standard deviation of �i /�i��t�, so an appropriate estima-
tion of the typical relative error ��i� /�i� is ��f�, which scales
as �ln f when f is close to 1. �The difference between the
expression here ���−�� /�� and the standard definition of
relative error ���−�� /� is negligible, when the error is
small.� Thus, we expect the fluctuation in the histogram to be
ri

	��f� / ln f �1/�ln f , because d�i��t� /dhi�t�=�i��t�ln f .
This has been recently confirmed by numerical tests �13�.
Our strategy for a single iteration simulation is to run until a
minimum number of visits �at least 1 /�ln f� have been accu-
mulated for each macroscopic state, followed by measure-
ments separated by a short simulation that decorrelates ri�t�.
Usually 1/�ln f visits on each macroscopic state is enough.
With K measurements, the statistical error in ln �i��t� is re-
duced to �ln f /K. The total number of records in the histo-
grams is thus at least

�
i=1

N

hi�t� 	 �
i

logf
�i

mini��i�
+

NK
�ln f

. �6�

The first term represents the number of records for the simu-
lation to reach every macroscopic state. This term occupies
the bulk of the histograms in Fig. 1. The second term of Eq.
�6� represents the cost of K uncorrelated measurements. The
measurements can be parallelized on a number of processors.
The dashed staircase in Fig. 1 shows what happens if the
energy is divided into four equal intervals, as Ref. �1� did for
parallelization. As the spectrum is divided into four intervals
assigned to four separate simulations, an interval with high
density of states does not have to wait for those with low
density of states to be visited. The histogram represented by
the first term of Eq. �6� is reduced to the area of four tri-
angles bounded by the staircase and the last histogram above
it in Fig. 1. In terms of saving total computational time, an
equivalent strategy is to use the staircase as an initial guess
�i. Thus, four triangles are filled simultaneously, equivalent
to doing four simulations sequentially. Dividing the energy
range causes boundary errors �9�, while a good initial guess
of the functional form of the histogram does not have this
problem.

Assuming N is roughly proportional to the total number of
degrees of freedom, to the logarithm of the maximum den-
sity of states, and to the number of MC steps to generate an
uncorrelated visit, the cost of CPU time for the first term in
Eq. �6� is of order O�N3�, while the cost of the second term is
of order O�N2�. �Logarithmic corrections might be present.�
If we use a proper guess �i to begin the simulation, the CPU
time cost for the first term can be substantially reduced to
O�N2�.

Now we discuss the effect of insufficient S that introduces
autocorrelation between successive records in the histogram.
At first sight, the total number of steps given by Eq. �6� is
considerably reduced by using a large f . Multiple measure-
ments also reduce the statistical error more quickly than re-
ducing the value of f , so a small f seems to be unnecessary.
However, there are systematic errors due to the correlation
between adjacent records in the histogram when f is not
small, or the separation S not large enough. We illustrate this
systematic error in Fig. 2, which shows the total density of
states for a fixed magnetization M, ��M�, of the Ising model
on a 4�4 lattice, for which the exact result is: log10 ��M�
=log10 C16

8+M/2+ �1−�0M�log10 2. States with M and −M are
grouped in the same macroscopic state for better statistics, so
M is restricted to be a non-negative even integer. We dem-
onstrate the effect of this correlation in Fig. 2 by showing the
result of an extremely biased scheme that restores all 16
spins to total alignment after each record. As expected, the
result �shown as downward triangles� is biased towards M
=16. The simulation actually calculates the probability of
reaching state M starting from M =16 within 16 trial flips,
which deviates from the correct density of states. On the
other hand, the accuracy of data shown as squares indicates
that the desired probability distribution Eq. �1� is produced
after 1600 trial flips. The data plotted with diamonds for a
smaller f show that the systematic error is also reduced by

FIG. 1. �Color online� Snapshots of the histogram of a single
random walker on a two-dimensional 32�32 Ising model. Three
thin curves are histograms of three sequences of lengths labeled in
the figure. The thick dark line is the ��E� calculated from the last
histogram �t=76 950�, which overlaps with the exact ��E� within
the accuracy of the width of the line on this figure. The length of the
sequence is just the area under the histogram. The dashed staircase
indicates a possible guess for ��E� with four energy intervals �see
text�.
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letting f →1, or equivalently, the minimum S required to
eliminate the autocorrelation decreases with f . As an extreme
case, if each trial flip is recorded �S=1�, for the Ising model
of Fig. 1, the histogram always grows quickly near E=0 and
propagates to higher or lower energies very slowly. The sys-
tematic error due to the correlation is revealed, when the
statistical error is reduced by multiple measurements with a

single f . At this point, either a smaller f , or larger S is nec-
essary to improve the accuracy.

To summarize, we have given an proof of the conver-
gence of the WL algorithm, and analyzed the sources of er-
rors and optimization strategies. We find: �i� the density of
states is encoded in the average histogram; �ii� the fluctuation
of the histogram, proportional to 1/�ln f , where f is the
modification factor, causes statistical error, which can be re-
duced by averaging over multiple ���t�; �iii� the correlation
between adjacent records in the histogram introduces a sys-
tematic error, which is reduced by small f , and also by mini-
mizing the correlation, e.g., using large S, or cluster algo-
rithms �14�. These findings suggest that numerical
simulations can start with a large f , e.g., e4, and then reduce
f in large steps in each stage, e.g., divide ln f by a factor of
10. Multiple measurements can be made in the final stage to
reduce the statistical error effectively. However, results cal-
culated with a single pair of f and S are prone to systematic
error. One can extrapolate results calculated with different f
and S to f =1 or S=� to eliminate this error. If the error is
believed to be small enough, one can also reduce f to 1
directly, which results in a histogram proportional to �i /�i��t�,
which is the ratio of the true density of states to the numeri-
cal results.
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zation M of 16 Ising spins normalized to ��M =16�. The solid line
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aged over 100 measurements, so the statistical errors are smaller
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